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ABSTRACT 

The dynamics of SU(N) gauge theories, especially for A’ = 3, in a small 
C-periodic box are investigated. We identify the fields that mimimize the 
energy-the torons-and determine which of these “classical” vacua are sta- 
ble quantum mechanically. The stable torons break cubic symmetry, which 
has interesting consequences on the spectrum. At any of the stable towns 
there are also quartic modes. Since all C-periodic boundary conditions 
are gauge-equivalent, we choose a convenient version, for which the quar- 
tic modes are constant modes, and compute the effective Hamiltonian to 
one loop in perturbation theory. 
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1 Introduction 

For non-abelian gauge fields C-periodic boundary conditions were introduced in ref. [l]. 
With C-periodic boundary conditions fields at I + Le; are the charge conjugate of fields 
at 2. (Here e; is a unit vector in the i direction, and L denotes the length of the torus.) 
Gauge invariant operators with C = +l are periodic and those with C = -1 are anti- 
periodic. An SU(N) gauge field, however, is C-periodic up to a gauge transformation: 

A(z t Lei) = Qi(z)[V t A’(z)]O;‘(z), (1.1) 

where + denotes complex conjugation. 
Under local gauge transformations 

(For details about our conventions, see [l].) 

and 

‘A(r) = dr)F’f A(s)lg-‘(~), (1.2) 

‘R(Z) = g(Z + Lei)ni(Z)gT(I), (1.3) 

where g(r) is an SU(N)-valued function with arbitrary boundary condition. The su- 
perscript T denotes transpose, and for a unitary matrix gT = (g-t)‘. 

C-periodic boundary conditions are interesting because they share several topolog- 
ical properties of the infinite volume [I, 21. For example, in Abelian gauge theories 
C-periodic boundary conditions permit a single charged particle in a finite volume, 
whereas periodic systems are always neutral [2], owing to Gauss’ law. In pure SU(N) 
gauge theories with periodic boundary conditions the Hamiltonian possesses ZN sym- 
metries. With C-periodic boundary conditions there are no such symmetries for odd 
N, and they are merely Zz for even N [l]. Furthermore, for odd N the topological 
(instanton) charge is an integer. 

At non-zero temperature, spatial C-periodic boundary conditions explicitly break 
the (“temporal”) 23 symmetry of the SU(3) partition function. They act as a soft source, 
selecting a preferred value of the Polyakov loop [3]. This contrasts the behavior in a 
periodic box, where the average Polyakov loop vanishes because of tunneling between 
the three 23 phases, even above the deconfinement temperature. Physically speaking, a 
single 23 charge-the Polyakov loop represents a static quark-can exist in a C-periodic 
volume, while in a periodic volume the Z3 Gauss law forbids it. When dynamical 
quarks are included C-periodic boundary conditions break chiral symmetry in a similar 
fashion [3], which has interesting consequences for the low energy chiral Lagrangian 
describing the physics of the Goldstone pions. More generally, C-periodic boxes offer 
the possibility of approaching the infinite volume limit with different qualitative features 
than in traditional periodic boxes. In particular, a comparison of the two can be used to 
estimate the size of finite size effects, and to show that the physics ultimately becomes 
independent of the infrared cutoff. 

This paper concentrates on N = 3 and studies the dynamics in a small C-periodic 
box using perturbation theory. For the periodic box this approach was pioneered by 
Liischer [4]. To all orders of perturbation theory, he found that the spectrum possesses 
an Nd-fold degeneracy among all sectors of ‘t Hooft electric flux [5]. The degeneracy 
is lifted non-perturbatively by tunneling between different perturbatively degenerate 
states [6]. For SU(3) gauge theory with C-periodic boundary conditions there are no Z3 
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sectors at all. Therefore, one might hope that the spectrum in a C-periodic box does not 
get rearranged by tunneling, and that the approach to the infinite volume limit might 
be smoother than in the periodic case. Unfortunately, it turns out that states with 
different quantum numbers of the cubic rotation group are degenerate to all orders of 
perturbation theory. Once again, non-perturbative tunneling removes the degeneracy. 

We follow Liischer’s line of attack [4]. First, one identifies the configurations that 
minimize the potential energy-the so-called torons. Second, one integrates out all 
modes other than the towns, yielding an effective potential V,=K, the minima of which 
are the starting point of perturbation theory. As with periodic boundary conditions, it 
turns out that there are other modes (other than the torons) that are quartic at the 
minima of V,,. They cannot be integrated out perturbatively, and the small-volume 
dynamics is described by an effective Hamiltonian Her for the quartic modes and the 
torons. Note that the two effective descriptions apply in different regions of configuration 
space, as illustrated in fig. 1. 

The paper is organized as follows: Sect. 2 explores the structure of the C-periodic 
toron valley, which consists of real, constant, abelian fields. The appendices contain 
the detailed proof that the torons are gauge-equivalent to real, constant, abelian fields. 
Sect. 3 presents the calculation of the toron effective potential Ye,. It has four absolute 
minima and one local minimum. Any of the four absolute minima is an appropriate 
starting point for perturbation theory, but they all break cubic invariance. The con- 
sequences of this symmetry breaking on the spectrum in small volumes is sketched in 
sect. 4. Sect. 5 explains how to evaluate & by evaluating the (imaginary) time evolu- 
tion amplitude and presents the results of the one-loop approximation to H,... Finally, 

quartic 

quadratic 

Figure 1: Regions of validity of V.rr vs. Her. The modes corresponding to the direction 
labeled “quadratic” are integrated out in both cases. For the expansions to be valid, 
their fluctuations must be O(gn). V.N is valid in the gray box, when the “quartic” 
fluctuations are O(g,) but the torons are O(1). Herr is valid in the clear box, when the 
quartic and toron fluctuations are O(gi’3). 
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sect. 6 offers some concluding remarks. 

2 Vacuum valley for C-periodic boundary conditions 

In SU(3) all choices of the transition function R; in eq. (1.1) are physically equivalent 
[l], so, except in sect. 5, we shall work with Ri = 1. Then eq. (1.1) becomes 

AA(z t Lei) = AA(z), A E {2,5,7}, 

A”(z t Lei)=-A”(I)y a E {1,3,4,6,8}, 
(2.1) 

in Lie-algebra components. More generally, the periodic components take values in an 
so(N) subalgebra of su(N), generated by the N real generators. The Hamiltonian can 
be written as H = +H + -H, where 

+H = /-d% (;g;(@)2 + ;g;2(+)2] , 

-H = Jddz [$g;(Eyy t fg;*(Fpy] . 
(2.2) 

(We work in d space dimensions, but we are most interested in d = 3.) The appendices 
show in detail that the minima of the potential energy are gauge-equivalent to real, 
constant, abelian fields. Roughly speaking, the anti-periodic modes must vanish because 
otherwise ViA4 # 0 and, hence, I$ # 0. This leaves the real so(N) subalgebra with 
Hamiltonian +H, whose potential Jddz(F$)*/(4g~) IS minimized by constant, abetian 
fields. 

In SU(2) and SU(3) the manifold of distinct torons resembles the orbifold that 
appears for SU(2) with periodic boundary conditions. The real, constant, abelian field 
is 

9A = CT’ 
L ’ (2.3) 

where T” = ioa/2 in SU(2) and T” = ix”/2 in SU(3). At the outset, it appears 
that C E IRd, but there are discrete gauge symmetries identifying certain C [6]. The 
transformation 

eXp(-4TT2Zi/L) 1 Ci H Ci + 4R 

reduces the manifold to a torus. Writing 1 = C$, ei, the transformation 

(2.4) 

exp(-3&a: I/L)exp(aT3)exp(-?rT’r. l/L) : C ++ -C + 2~1 (2.5) 

reduces the manifold to an orbifold. For SU(2) the orbifold is [0,4~)~/Zz, as with 
periodic boundary conditions. This is no great surprise, since for SU(2) C-periodic 
boundary conditions are gauge equivalent to periodic ones [l]. 

For SU(3) there is yet another discrete symmetry: 

exp(4xT’z. l/L) : C H -C (2.6) 

reducing the orbifold to [0,4~r)~/(Zz x Z,). The singular points of this orbifold are (for 
d = 3) in the set H = {(K, r, x), ()r, x, --?r), ( x, -r,x), (r, -R, -r)}. Based on previous 
experience, we expect these points to play an important role. 
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3 Effective potential for C 

To work out the toron effective potential, we start by parametrizing the SU(3) gauge 
field as follows: 

LA(z) = g-‘(r) LV f CT2 f gOzqA(v)TAexp[i2xv. z/L] 

g~~q”(v)T’L exi[ia(2u t I) . z/L] 
(3.1) 

g(r) 
Y 

where q*(O) = 0, qA(-v) = qA(v)*, q’(-u -I) = q”(v)*. Upper-case color indices run 
over A E {2,5,7}, whereas lower-case color indices run over a E { 1,3,4,6,8}. 

Let us define background-field covariant derivatives 

acting on qA(v) and 

++B = i2rv6AB + CfA’B (3.2) 

-v”* = irr(2Y t l)P t cf’LZ* (3.3) 

acting on q”(v). To O(gi) the kinetic energy of C and interactions can be neglected 
and the Hamiltonian is 

+H = & -& [pA(-u) .pA(v) t &-v) +f$=qf(v)] (3.4) 

with pA(v) the canonical momentum conjugate to qA(v) and 

+0;4cB = (- +D*6jk f +Dj +D*)AB. (3.5) 

The expressions for -H and -0;; are obtained by replacing +DAB by -pa*, qA by 
q”, etc. To O(gi) the Hamiltonians *H describe the Y # 0 modes as a collection of 
harmonic oscillators whose squared frequencies are the eigenvalues of *R. Adding up 
the zero-point energy of these oscillators gives the effective potential for C: 

LY.fl(C) = fTr[ +0’/‘(C)] + iTr[ -f?“*(C)]. (3.6) 

It is natural to work in the background-field Coulomb gauge 

+z+= qB(v) = 0, -29. q*(v) = 0. (3.7) 

Since C parameterizes an abelian field, the background-field covariant derivatives com- 
mute, so in Coulomb gauge l R = - *‘Da. The eigenvaiues are 

(3.8) 

and 
(2sv t d f C)‘, a E { 1,3} sector 

-Q(C) : (2rv t ~1 rt +C)‘, a E {4,6} sector 
(2irV + rq*, a = 8 sector 

(3.9) 
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all of which have multiplicity d - 1. Performing the traces yields 

V&(C) = iQC) t iqc - nl) t C(4C - “I) 

where (4, 61 

(3.10) 

C(C) = -$ c $ cos(C v). V#O 
(3.11) 

Near its minimum at C = 0, o(C) x g(O) + 21CI/L, cf. ref. [6]. Hence, the effective 
potential Yen(C) has conical minima at C = 0, from the first term in eq. (3.10), and at 
the Zd-’ points in IL, from the second term. (The third term implies a minimum at 2~1 
which is equivalent to 0 by eq. (2.5).) To decide which point is the absolute minimum 
one must perform the sums explicitly. For d = 3 

L&-r(O) = -1.78447.. . , 

LVdT(C E rI) = -3.25229 f. . . (3.12) 

Thus, there are four degenerate, absolute minima at C E II, as well as a local minimum 
at C = 0. 

Any of the four minima in II is an appropriate starting point for perturbation theory. 
It may seem peculiar that C = 0 is not appropriate, but it has precedent [7]. In sect. 5 
we shall set up perturbation theory, expanding around C = (n, r, r). The next section 
discusses, in general terms, how the cubic symmetry breaking influences the spectrum. 

4 Degeneracies to all orders in perturbation theory 

Let us review the structure of the effective potential for SU(N) gauge theories with peri- 
odic boundary conditions. The symmetry group of the Hamiltonian is G = Z$ .O(d, Z), 
the semi-direct product of the central conjugations and the rotation group of the d-cube. 
The effective potential for the torons has Nd minima, each with stability subgroup 
G = O(d, Z). If one calculates the spectrum perturbatively, by expanding about a given 
minimum, one finds that the spectrum is labeled by the irreducible representations of C. 
But there is an Nd-fold degeneracy, coming from states localized at the other minima. 
That is why the ‘t Hooft electric flux sectors are degenerate with the glueballs, to all 
orders in perturbation theory. Of course, non-perturbative tunneling between the Nd 
minima removes the degeneracies. 

There are analogous phenomena for N = 3 with C-periodic boundary conditions. 
Now the symmetry group of the Hamiltonian is G = O(d,Z), because there are no 
central conjugations. The effective potential for the torons has 2d-’ minima; below 
we identify the stability group G. Again, the irreducible representations of G label the 
perturbative spectrum, but each multiplet is 2d-‘-fold degenerate. Combining 2d-’ 
degenerate G-multiplets into a (reducible) representation of G then reveals that the 
Hamiltonian has degeneracies, to all orders in perturbation theory. And again, tunneling 
removes them. 

To work out the details one needs to describe the states enough to understand their 
symmetry properties. The quantum mechanical system at hand contains the degrees of 
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Table 1: Values of L$ for all C E II for d = 3. Note that, at these points, L; = -L$ 
always. 

(n,R,X) (a,rr,--K) (K,--7F,1T) (n,-a,--k) 
c+ - 
cg - 

- t t 
t - t 

G - t t - 

cc, f t - 

L, t - t .- 
L, t - - t 

freedom C governed by the potential V.n(C). A “perturbative eigenstate” centered at 
minimum C” E Il obeys 

(C) = C”T’IL. (4.1) 
In this sense C” characterizes the state. Consider the Wilson loops exp(j C” .da), and 
define 

L$ = 4 [Tr {exp[T*(CT f Cj”)]} - I] = cos {a(C: f CT)}. (4.2) 

Up to trivialities L$ describes a loop that wraps around the C-periodic box first in the 
i direction and then in the rtj direction, evaluated at C = C”. 

Table 1 contains the values of the L$ at all points in II for d = 3. At (rr, x, rr) one sees 
that the stability subgroup is G = Ss, the permutation group of the d = 3 axes,’ because 
any rotation that is not a permutation transforms a negative L into a positive one. At 
the other points G is isomorphic to 5’s. There are three irreducible representations of 5’s, 
whose Young tableaux are om, El’, and t]. If p is one of these representations, let R, be the 
reducible representation of 0(3, Z) generated by combining 2d-’ = 4 representations p, 
one from each minimum, each with the same (perturbative) energy. Using character 
tables it is easy to work out the irreducible content of R,. One finds 

Rp=E$Tl@Tz, (4.3) 

?I= 
&$TI. 

Eqs. (4.3) have the following consequences on the spectrum. In small volumes, where 
tunneling effects are suppressed, each Al state is degenerate with a Tz state, each A* 
state is degenerate with a Tl state, and each E state is degenerate with a Tr and a T2 
state. As with periodic boundary conditions, there is presumably a tunneling transition 
for some intermediate value of the coupling (i.e. volume) splitting these degeneracies. 

At larger volumes L X 1 fm rotational invariance ought to be restored. That means 
that an E and a Tz ought to combine into a spin 2 multiplet, an A*, a Tl, and a T2 
ought to combine into a spin 3 multiplet, etc. In addition, there may be other features 
of the spectrum arising from tunneling to the local minimum at C = 0. 

‘In d dimensions, 9 = Sd. 
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5 The Effective Hamiltonian 

At C = (r, x, r) the quadratic term in -II vanishes for two modes, 

(n'(O) - ~qvJ))ld% 
(q'(O) - $(o))*lJZ = (n'(-1) t $(-q)lJz, 

(5.1) 

cf. eq. (2.2). The fluctuations of these modes and C are still damped by quartic terms, so 
they are called quartic modes. Since perturbation theory develops a series of corrections 
to quadratic interactions, one must obtain an effective Hamiltonian for all quartic modes 
and solve it non-perturbatively, as in refs. [S, 61. 

Expanding around C = (?r, r, A) is a nuisance, especially since the quartic modes in 
eq. (5.1) prefer a complex basis for the Lie algebra. The gauge transformation 

h(z) = exp(rPr .1/L) (5.2) 

eliminates these problems, but induces a non-unit twist: “Ri = R, where 

R = exp(nP) = ( 0 1 0 
-1 0 0 

0 0 1 1 , (5.3) 

as required by eq. (1.3). The transformed gauge potential obeys a new boundary con- 
dition, 

A(= f Lei) = flA*(~)fi-‘, (5.4) 

or, in explicit Lie-algebra components, 

AA(z t Lei) = tAA(Z), A E {1,2,3}, 

A*(r t Le;) = -A’(z), 

(A’ k iA’)(r t hi) = hi(A5 f iA7)(r), 
(5.5) 

(A4 r iA6)(r t Le;) = &(A4 T iA’)( 

With eq. (5.4) the torons are still real, constant, abelian fields, parameterized as in 
eq. (2.3). Splitting the Hamiltonian into pieces according to the boundary conditions 
of eq. (5.5) and repeating the analysis of sect. 3 shows that the absolute minima of Vex 
are now at C = 0 and three other points 2xei. Furthermore, at C = 0 the additional 
quartic modes are the constant modes of A’ and A3. Hence, the split between quartic 
and quadratic modes is simply 

LAA(z) = cA t goPA( A E {1,2,3}, (5.6) 

with ~ddzqA(z) = 0. 
The components A”, a E {4,5,6,7,8}, are always quadratic. A* is anti-periodic 

and has half-integer momenta p = 2a(v t fl)/L. However, it does not couple to 
the quartic modes cA, so it plays no role in the calculations below. The &-periodic 
modes have quarter-integer momenta p = 2a(v f fr)/L. These are not artifacts of 
the boundary condition eq. (5.4); instead, they would have appeared with the standard 
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C-periodic boundary condition, when expanding around C = (r, K, 1~), as a glance at 
the eigenvalues in eqs. (3.8) and (3.9) verifies. 

The effective Hamiltonian can be worked out by computing the amplitude to prop- 
agate from one constant field cA to another. It is defined by 

( CA(T)le-H**= A Ic (0)) = (CA(WHTICAW), (5.7) 

where the right-hand side is computed in the full theory, and the left-hand side is an 
expression involving cA and its conjugate momentum eA = -ia/dcA. In the path 
integral formalism 

(~~(T)le-~~lc~(O)) = /VA; e-JzdtiC (5.8) 

and 

( ~~(T)je-~**= A Ic (0)) = Jvcf e-.Py (5.9) 

where L and 13,~ are Euclidean Lagrangians. 
To the order of interest /& is given by the two- and four-point diagrams in fig. 2. 

We use Feynman perturbation theory to evaluate them. The familiar Feynman rules 
apply, but with a few modifications. The external lines denote wave functions @/go, 
and an n-point function acquires a combinatorial factor l/n!. In general the c” are 
time or, after Fourier transforming, frequency dependent; pocA corresponds to eA. We 
shall only need terms up to pi in the two-point diagrams, and the po-independent piece 
of the four-point function. The loop frequency is integrated as usual, but the spatial 
loop momentum is summed over the values allowed by the boundary condition. In 
particular, the loop momentum is p = 2m/L for A E {1,2,3} and p = ~K(Y f. +l)/L 
for a E {4,5,6,7}. Since PBS = 0 the eighth component drops out. 

Taking permutation and gauge symmetry into account, the effective Lagrangian 
takes the form 

L&f = gc*(6ij -g~Pij)$l$kf t V&(CA), (5.10) 

where Ve’,s(cA) is given below in eq. (5.24). In the Hamiltonian the kinetic term is 
z/3 A gi(&j + g~p;j)~e~e~, or after resealing CA c go ci and ef Y gi2’3ef, 

LHes = gi’3(6ij t g,‘pij)$e$ef t gi’3(6ij f go2q~j)fF~F~ 

tg,4'3mijC;4Cf tg,813SijklsABDEC~~~~~~~, 

where F,$ = fABDc”cf, and 

(5.11) 

QABDE = 2 

3( 
~ABJDE f PD6E-4 f PF) . (5.12) 

In an arbitrary covariant gauge with gluon propagator 

-) (6,” - (1 - “,y) 

explicit evaluation of the Feynman diagrams yields 

(5.13) 

(5.14) 

8 



and 

( (d t 11 - 124 - 6(d + 2 - 34%) , (5.15) 

(5.16) 

The notation {...} implies complete symmetrization of the embraced indices. The 

x M 

Figure 2: One loop Feynman diagrams for the two- and four-point functions. 
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summation symbols and their associated loop momentum values are 

c’ := go, k = 27~ 

from the periodic modes in the loops, and 

(5.18) 

c” := F, k = 24~ - 41) (5.19) 

from the G-periodic modes. The difference in the sums is an infrared effect; in partic- 
ular, the poles as d + 3 are identical, and are absorbed by the usual SU(3) coupling 
constant renormalization. 

It would have been much too tedious to obtain these results by hand for arbitrary 
a, so we used the symbolic manipulation language FORM. We checked the FORM 
programs in several ways. For example, it was easy to reproduce the known result for 
the infinite-volume two-point function in an arbitrary gauge, since the Feynman rules 
for vertices are the same. 

Note that mij and Sij, are gauge invariant, but pij and qij depend on a. However, 
the wave-function renormalization 

c? + Z?!=c? v 1’ e; + z,yq, (5.20) 

where 
Zij = 6ij t g:Zij, %j = j(Pij - qij), (5.21) 

removes the gauge dependence, and sets the coefficients of the kinetic term and the 
tree-level potential term equal. In addition, after renormalization the kikj/ks terms 
cancel: 

pij - Zij = qij t 2Zij = 6ijOz, (5.22) 

where 
02 = y (2,'t c") $ = &f t a*, (5.23) 

with d = 3 - 2~. This is a pleasant surprise. After this field renormalization and 
MS-scheme coupling constant renormalization 

LH& = g2/3(1+ g%*) (f&l t iF$F$) 

+ 9413mjjc;4e:’ + g8'3S;jh13ABDEC9C~C~C~, 
(5.24) 

where g2 = &(1/L). Numerical values for a~, mij, and Sijkl are in Table 2. Notice 
how the quarter-momentum sums lead to terms in H,K that break the cubic symmetry 
down to the permutation symmetry, as discussed in sect. 4. 

After renormalization, these formulae straightforwardly reproduce previous calcula- 
tions of Liischer [4] when the momenta are color blind. Moreover, we also checked the 
final results by repeating the calculations using Liischer’s technique of Bloch perturba- 
tion theory. 

Some qualitative properties of the spectrum follow from eq. (5.24) immediately. 
To lowest order in g2i3, which should pertain to the smallest of volumes. the effective 
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Table 2: The coefficients in the effective Hamiltonian. The tensors rnij and S+, are 
completely symmetric. 

coefficient C’ 2’ total 
3(47r)%/ll -0.2727019 0.5986198 0.3259179 

67~;; -5.6745750 -0.2004840 -5.8750590 
6amij -1.4383214 -1.4383214 

6OT*Siiii -0.4289976 0.2502256 -0.1787720 
6Orr’Sijjj 0.0446557 0.0446557 
GOr’S<i~~~~ 0.6311655 -0.0730294 0.5581361 
6OR*Sij~~ -0.0039135 -0.0039135 

Hamiltonian is invariant under the full rotation group O(3). Indeed, it is identical to the 
effective Hamiltonian of SU(2) in a periodic box. (This is because the quartic modes 
at any absolute minimum of V.s form an s”(2) subalgebra.) Ram ref. [8] we know, 
therefore, that the vacuum has quantum numbers JP = O+, where P refers to parity. 
Furthermore, the 2+ glueball lies lower than the O+ glueball [8]. For periodic SU(2) 
all these states (including the vacuum) exhibit an eight-fold degeneracy, associated 
with central conjugations. For C-periodic SU(3) they exhibit a four-fold degeneracy, 
associated with the rotations connecting the four minima of Vex. Of course, in SU(3) 
one must specify charge conjugation; all states built out of the quartic modes cA have 
c = t. 

At O(g413) the m;j-terms in eq. (5.24) break the O(3) symmetry down to the per- 
mutation group S3. The O++ states are simply labeled as 1113 states, but the 2++ states 
split into arm and twoEP states with different energies. Higher order terms respect this 
pattern. All states are in addition 4-fold degenerate, but as discussed in sect. 4 this 
degeneracy is lifted non-perturbatively by tunneling between different perturbatively 
degenerate states. 

Altogether one may distinguish four regimes: very small volumes, where lowest 
order perturbation theory applies, and the states are labeled by representations of the 
full rotation group O(3); somewhat larger volumes, where higher order perturbative 
contributions become non-negligible and the S3 multiplets are resolvable; intermediate 
volumes, where tunneling restores the cubic rotation group O(3,Z); and, finally, large 
volumes, where the full O(3) rotation group reappears. This demonstrates that also 
with C-periodic boundary conditions there is no simple connection between the small 
volume perturbative regime and the large volume non-perturbative regime. 

6 Conclusions 

A preliminary write-up of these results [ll] d rew the incorrect conclusion that the 
absolute minimum of V.R was unique. If that had been the case, the volume dependence 
of glueball masses in a C-periodic box may have matched more smoothly onto large 
volume results than in a periodic box. Since we now know that there are four degenerate 
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minima of the toron effective potential, tunneling transitions are expected. However, 
the SU(3) C-periodic effective Hamiltonian is similar (at lowest order identical) to its 
SU(2) periodic counterpart. Consequently, it might be simpler to solve than the periodic 
SU(3) case [9, lo]. Of course, there may be technical complications owing to the local 
minimum. 

A complete spectrum calculation goes beyond the scope of this paper, which concen- 
trates on the derivation of the effective Hamiltonian and some of its qualitative features. 
A spectrum calculation would nevertheless be interesting, especially when confronted 
with numerical simulations of the glueball spectrum in a C-periodic box. In simulations 
one can also probe the physically most interesting large volume regime. A comparison 
of periodic and C-periodic systems may reveal how sensitive the gluon system is to the 
infrared cutoff, and how large the volume must be before we see non-perturbative large 
volume results. 
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A Torons are Real, Constant and Abelian 

The potential energy is 

V[A] = $ / ddz (I$)‘, 
0 

(A.11 

where 0 5 z; < L, 
Ej = ViAj - VjAi + [Ai, Aj] = FG’I’” C-4.2) 

is the field strength, and 90 is the bare coupling. Obviously, if A is constant (ViAj = 0) 
and abelian ([A;,Aj] = 0), F,j and V vanish. Ref. [l] showed that any C-periodic 
boundary condition is gauge-equivalent to eq. (2.1). With those boundary conditions, 
however, a constant A must also be real. On the other hand, suppose the field strength 
(and therefore the potential energy) vanishes for some A. We want to show that A is 
gauge equivalent to a real, constant, abelian configuration. 

Let a be the gauge transformation that brings A into the complete axial gauge: 

aAl = 0 everywhere, 
“AZ(z) = 0 for z1 = 0, 
IIAa(z)=O forsl=sz=O,.... 

(A.3) 

This gauge transformation induces non-trivial transition functions “fl;. The field 
strength vanishes everywhere if and only if parallel transport around any contractable 
path is trivial. Starting with infinitesimal paths near I = 0, it is easy to see that this 
is so only if “A(r) = 0 and only if “Q,(z) = Vi, where V; are constant matrices obeying 

“;:V; = VjV~. (A.4) 

The condition on the “Ri comes from considering paths that cross two boundaries but 
are still contractable. 
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There is a gauge transformation b, constructed in Appendix B, such that 

boSki = bV; = exp(T’Ci), (A.5) 

but still preserving the complete axial gauge. Now let c = exp(-T’C.r/L) and 9 = cba. 
Then 9A = CT’/L is real, constant and abelian as claimed. Moreover, the transition 
functions have been gauged away again, WI< = 1. 

Carrying out the gauge transformation h in eq. (5.2) shifts the value of C, viz. 
*C = C - ~1. Hence, under the boundary condition of eq. (5.4) the torons are real, 
constant and abelian as well. 

B Construction of b 

The axial gauge condition does not fix gauge transformations that are constant for 
0 5 z; < L, but complex conjugated each time Zi 2 L. Under such a transformation 
1) : Vi ++ VKVT. Let IV, = KVi*, and note that repeated use of eq. (A.4) implies that 
all Wi can be simultaneously diagonalized. Denote the unitary matrix that carries out 
the diagonrdization by u, and write 

Pf = UiQLT, pivc = Ai = &g(X!‘) Xt2) A!‘)). i 2 i ? t P.1) 

Then 
iri = njfi= = (i$ii)T, P.2) 

which implies, for each i, that vi falls into one of two cases: Case (0): Ai is the unit 
matrix. Then fi = pi’ and hence V, = I$‘. Case (a,/?): Xl”’ = ei2c;, C; # 0, for some 
a. Then eq. (B.2) says that the other two entries of Ai are Xi @) = ,-i2ci and X(‘d = 1, 

and it says that all elements of p; vanish except Vi - (4 
ir(T-7) = ,-iZCi 

= ie-‘(C’-Q), p, = ;,:(G+o), 

Either there is a direction I such that v, falls under case (0), or all q fall under a 
case (a,P). Suppose the former, i.e. VI = V,‘. Since VI E SU(N) there is a matrix w 
such that w* = VI-‘, and w is symmetric, since Vr is. Now define the C-periodic gauge 
transformation 61 to be w for 0 5 z; < L, W* if one +i > L, etc. Then “‘VI = UJVIW~ = 1 
and eq. (A.4) implies that all “‘Vi are real. But if aI Vi were real, eq. (A.4) would imply 
that they commute. Define C; by blI$ = exp(wATACi), where A E {2.5,7}. This is 
possible because the bl Vi are real and commute. Here 

us = sin 0 cos 4, (B.3) 
cd7 = sin 0 sin f#~ 

form a unit vector. The real, constant gauge transformation 

cosqb -sin+ 0 
bz = co60 sin+ cosfl cos+6 -sin0 

sin e sin 4 sin e cos d cos e 
(B.4) 

rotates uATA to T’. Hence, setting b = bzbl, bVi = exp(T2Ci) as in eq. (A.5). 
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Now suppose ail fi fall under a case (a,@. Eq. (A.4) requires that @, a, and p be 
the same for all i. Without loss one may assume (~,a) = (1,2). Then define 

(B.5) 

The gauge transformation that brings K into the desired form is b = w for 0 < zi < L, 
complex conjugated each time “j > L. 
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